
pm4ngs
Release 0.0.1

Roberto Vera Alvarez

May 28, 2020

CONTENTS

1 Features 3

2 Links to available data analysis workflows 5
2.1 Differential Gene expression from RNA-Seq data . 5
2.2 Differential Binding detection from ChIP-Seq data . 23
2.3 Detection of binding events from ChIP-exo data . 36

3 Extra links 51
3.1 Project Templates Installation . 51
3.2 Project Description YAML file . 52

4 Reference 55

5 Public Domain Notice 57

i

ii

pm4ngs, Release 0.0.1

PM4NGS was designed to generate a standard organizational structure for Next Generation Sequencing (ngs) data
analysis. It includes a directory structure for the project, several Jupyter notebooks for data management and CWL
workflows for pipeline execution.

Our work was inspired by a manuscript by Prof. William Noble in 2009: A Quick Guide to Organizing Computational
Biology Projects. We recommend reading this paper for a better understanding of the guiding principles of our project.

The project is composed of three main parts.

1. a project organizational structure which define a standard files and directories for the project

2. Jupyter Notebooks as user interfaces for data management and visualization

3. CWL workflows that execute the data analysis

PM4NGS source code includes the templates used by cookiecutter to generate the project organizational structure and
the Jupyter notebooks. The CWL workflows are defined in a separate GitHub project named: cwl-ngs-workflows-cbb.

All projects generated from these templates follow the same design principles explained in the Background Informa-
tion.

CONTENTS 1

https://github.com/ncbi/pm4ngs
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
https://github.com/ncbi/cwl-ngs-workflows-cbb

pm4ngs, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

FEATURES

• NGS data integration, management and analysis uses Jupyter notebooks, CWL workflows and cookiecutter
project templates

• Easy installation and use with a minimum command line interaction

• Data analysis CWL workflows executed from the Jupyter notebook with automatic failing detection and can be
validated with published data

• CWL workflows and Jupyter Notebooks are ready for cloud computing

• Project reports and dynamic content creation after data processing using CWL workflows are included

• Optional use of Docker/Biocontainers or Conda/Bioconda for Bioinformatics tool installations and manage-
ments are also included

3

pm4ngs, Release 0.0.1

4 Chapter 1. Features

CHAPTER

TWO

LINKS TO AVAILABLE DATA ANALYSIS WORKFLOWS

2.1 Differential Gene expression from RNA-Seq data

Warning: Read the Background Information before proceeding with these steps

Warning: Read the Project Templates Installation notes to have the cookiecutter available in you shell depending
on the execution environment you will be using.

2.1.1 Samples description file

A TSV file named factors.txt is the main file for the projects and workflow. This file should be created before any
project creation. It is the base of the workflow and should be copied to the folder data/{{dataset_name}} just after
creating the project structure.

The initial sample names, file name prefixes and metadata are specified on it.

It should have the following columns:

id SampleID condition replicate
classical01 SRR4053795 classical 1
classical01 SRR4053796 classical 2
nonclassical01 SRR4053802 nonclassical 1
nonclassical01 SRR4053803 nonclassical 2

Warning: Columns names are required and are case sensitive.

Columns

• id: Sample names. It can be different of sample file name.

• SampleID: This is the prefix of the sample file name.

For single-end data the prefix ends in the file extension. In this case, for the first column, a file name named
SRR4053795.fastq.gz must exist.

For paired-end data the files SRR4053795_1.fastq.gz and SRR4053795_2.fastq.gz must exist.

5

pm4ngs, Release 0.0.1

The data files should be copied to the folder data/{{dataset_name}}/.

• condition: Conditions to analyze or group the samples. Avoid using non alphanumeric characters.

For RNASeq projects the differential gene expression will be generated comparing these conditions. If there
are multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPSeq projects differential binding events will be detected comparing these conditions. If there are
multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPexo projects the samples of the same condition will be grouped for the peak calling with MACE.

• replicate: Replicate number for samples.

2.1.2 Installation

RNA-Seq workflow with Conda/Bioconda

The RNA-Seq project structure is created using the conda environment named templates.

First step is to activate the templates environment:

localhost:~> conda activate templates

Then, a YAML file (for this example I will call this file: rnaseq-sra-paired.yaml) with your project detail should be
created.

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "rnaseq-sra-paired"
5 dataset_name: "PRJNA290924"
6 is_data_in_SRA: "y"
7 ngs_data_type: "RNA-Seq"
8 sequencing_technology: "paired-end"
9 create_demo: "y"

10 number_spots: "1000000"
11 organism: "human"
12 genome_dir: "/gfs/data/genomes/igenomes/Homo_sapiens/UCSC/hg38"
13 genome_name: "hg38"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/STAR"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/genome.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/genes.gtf"
17 genome_gff: "{{ cookiecutter.genome_dir}}/genes.gff"
18 genome_gff3: "{{ cookiecutter.genome_dir}}/genes.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/genes.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/chrom.sizes"
21 genome_mappable_size: "hg38"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/hg38-blacklist.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "n"
26 pull_images: "n"
27 use_conda: "y"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "n"

(continues on next page)

6 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

(continued from previous page)

31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the rnaseq-sra-paired.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file rnaseq-sra-paired.yaml https://
→˓github.com/ncbi/pm4ngs.git
Checking RNA-Seq workflow dependencies Done
localhost:~>

This process should create a project organizational structure like this:

localhost:~> tree rnaseq-sra-paired
rnaseq-sra-paired

bin
bioconda (This directory include a conda envs for all bioinfo tools)
cwl-ngs-workflows-cbb (CWL workflow repo cloned here)
jupyter (This directory include a conda envs for Jupyter notebooks)

config
init.py

data
PRJNA290924

doc
index.html
LICENSE
notebooks

00 - Project Report.ipynb
01 - Pre-processing QC.ipynb
02 - Samples trimming.ipynb
03 - Alignments.ipynb
04 - Quantification.ipynb
05 - DGA.ipynb
06 - GO enrichment.ipynb

README.md
requirements

python.txt
results

PRJNA290924
src
tmp

14 directories, 12 files

Now you should copied the factors.txt file to the folder: data/PRJNA290924.

After this process, cookiecutter should have created create two virtual environment for this workflow.

The first one is for running the Jupyter notebooks which require Python 3.6+ and it is named: jupyter. It can be
manually installed as described in here.

The second environment is be used to install all Bioinformatics tools required by the workflow and it will be named:
bioconda.

You can verify the environments running this command:

2.1. Differential Gene expression from RNA-Seq data 7

pm4ngs, Release 0.0.1

localhost:~> conda env list
conda environments:
#
base * /gfs/conda
tempates /gfs/conda/envs/templates

/home/veraalva/rnaseq-sra-paired/bin/bioconda
/home/veraalva/rnaseq-sra-paired/bin/jupyter

localhost:~>

Please, note that the Conda prefix /gfs/conda will be different in you host. Also, note that the bioconda and jupyter
envs are inside the bin directory of your project keeping them static inside the project organizational structure.

RNA-Seq workflow usage with Conda/Bioconda

For start using the workflow you need to activate the conda environments bioconda and jupyter.

localhost:~> conda activate /home/veraalva/rnaseq-sra-paired/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/rnaseq-sra-paired/bin/jupyter

Note the –stack option to have both environment working at the same time. Also, the order is important, bioconda
should be activated before jupyter.

Test the conda envs:

localhost:~> which fastqc
/home/veraalva/rnaseq-sra-paired/bin/bioconda/bin/fastqc
localhost:~> which jupyter
/home/veraalva/rnaseq-sra-paired/bin/jupyter/bin/jupyter

Note that the fastqc tools is installed in the bioconda env and the jupyter command is installed in the jupyter env.

Then, you can start the jupyter notebooks.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navegate in your browser to the notebooks folder and start executing all notebooks by their order
leaving the 00 - Project Report.ipynb to the end.

RNA-Seq workflow with Docker

In this case, the RNA-Seq project structure is created using the Python virtual environment as described here

First step is to activate the Python virtual environment.

localhost:~> source venv-templates/bin/activate

Then, a YAML file (for this example I will call this file: rnaseq-sra-paired.yaml) with your project detail should be
created.

8 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "rnaseq-sra-paired"
5 dataset_name: "PRJNA290924"
6 is_data_in_SRA: "y"
7 ngs_data_type: "RNA-Seq"
8 sequencing_technology: "paired-end"
9 create_demo: "y"

10 number_spots: "1000000"
11 organism: "human"
12 genome_dir: "/gfs/data/genomes/igenomes/Homo_sapiens/UCSC/hg38"
13 genome_name: "hg38"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/STAR"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/genome.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/genes.gtf"
17 genome_gff: "{{ cookiecutter.genome_dir}}/genes.gff"
18 genome_gff3: "{{ cookiecutter.genome_dir}}/genes.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/genes.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/chrom.sizes"
21 genome_mappable_size: "hg38"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/hg38-blacklist.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "y"
26 pull_images: "y"
27 use_conda: "n"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "y"
31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the rnaseq-sra-paired.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file rnaseq-sra-paired.yaml https://
→˓github.com/ncbi/pm4ngs.git
Cloning Git repo: https://github.com/ncbi/cwl-ngs-workflows-cbb to /home/veraalva/
→˓rnaseq-sra-paired/bin/cwl-ngs-workflows-cbb
Creating a Python3.7 virtualenv
Installing packages in: /home/veraalva/rnaseq-sra-paired/venv using file /home/
→˓veraalva/rnaseq-sra-paired/requirements/python.txt
Checking RNA-Seq workflow dependencies .

Pulling image: quay.io/biocontainers/fastqc:0.11.8--1 . Done .
Pulling image: quay.io/biocontainers/trimmomatic:0.39--1 . Done .
Pulling image: quay.io/biocontainers/star:2.7.1a--0 . Done .
Pulling image: quay.io/biocontainers/samtools:1.9--h91753b0_8 . Done .
Pulling image: quay.io/biocontainers/rseqc:3.0.0--py_3 . Done .
Pulling image: quay.io/biocontainers/tpmcalculator:0.0.3--hdbb99b9_0 . Done .
Pulling image: quay.io/biocontainers/igvtools:2.5.3--0 . Done .
Pulling image: quay.io/biocontainers/sra-tools:2.9.6--hf484d3e_0 . Done .
Pulling image: ubuntu:18.04 . Done
Building image: r-3.5_ubuntu-18.04 . Done Done

localhost:~>

2.1. Differential Gene expression from RNA-Seq data 9

pm4ngs, Release 0.0.1

This process should create a project organizational structure like this:

localhost:~> tree rnaseq-sra-paired
rnaseq-sra-paired

bin
cwl-ngs-workflows-cbb (CWL workflow repo cloned here)

config
init.py

data
PRJNA290924

doc
index.html
LICENSE
notebooks

00 - Project Report.ipynb
01 - Pre-processing QC.ipynb
02 - Samples trimming.ipynb
03 - Alignments.ipynb
04 - Quantification.ipynb
05 - DGA.ipynb
06 - GO enrichment.ipynb

README.md
requirements

python.txt
results

PRJNA290924
src
tmp
venv

bin
etc
include
lib
locale
README.rst
share

19 directories, 13 files

Now you should copied the factors.txt file to the directory: data/PRJNA238004.

After this process, cookiecutter should have pulled all docker images require by the project.

RNA-Seq workflow usage with Docker

For start using the workflow you need to activate the Python environment inside the project.

localhost:~> source venv/bin/activate

Then, you can start the jupyter notebooks now.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

10 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navigate in your browser to the notebooks directory and start executing all notebooks by their
order leaving the 00 - Project Report.ipynb to the end.

2.1.3 Jupyter Notebook Server

Top-level directories from the Jupyter server viewed in a web browser

2.1. Differential Gene expression from RNA-Seq data 11

pm4ngs, Release 0.0.1

Notebook generated fro the Chip-exo data analysis

2.1.4 CWL workflows

SRA download and QC workflow

This CWL workflow is designed to download FASTQ files from the NCBI SRA database using fastq-dump and then,
execute fastqc generating a quality control report of the sample.

12 Chapter 2. Links to available data analysis workflows

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

pm4ngs, Release 0.0.1

Inputs

• accession: SRA accession ID. Type: string. Required.

• aligned: Used it to download only aligned reads. Type: boolean. Optional.

• split-files: Dump each read into separate file. Files will receive suffix corresponding to read number. Type:
boolean. Optional.

• threads: Number of threads. Type: int. Default: 1. Optional.

• X: Maximum spot id. Optional.

Outputs

• output: Fastq files downloaded. Type: File[]

• out_zip: FastQC report ZIP file. Type: File[]

2.1. Differential Gene expression from RNA-Seq data 13

pm4ngs, Release 0.0.1

• out_html: FastQC report HTML. Type: File[]

Samples Trimming

Our workflows uses Trimmomatic for read trimming. The Jupyter notebooks uses some basic Trimmomatic options
that need to be modified depending on the FastQC quality control report generated for the sample.

STAR based alignment and sorting

This workflows use STAR for alignning RNA-Seq reads to a genome. The obtained BAM file is sorted using SAM-
tools. Statistics outputs from STAR and SAMtools are returned as well.

Inputs

• genomeDir: Aligner indexes directory. Type: Directory. Required. Variable ALIGNER_INDEX in the
Jupyter Notebooks.

• threads: Number of threads. Type: int. Default: 1. Optional.

• reads_1: FastQ file to be processed for paired-end reads _1. Type: File. Required.

• reads_2: FastQ file to be processed for paired-end reads _2. Type: File. Required.

Outputs

• sorted_bam: Final BAM file filtered and sorted. Type: File.

14 Chapter 2. Links to available data analysis workflows

http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/alexdobin/STAR
http://www.htslib.org/
http://www.htslib.org/

pm4ngs, Release 0.0.1

• indexed_bam: BAM index file. Type: File.

• star_stats: STAR alignment statistics. Type: File.

• readspergene: STAR reads per gene output. Type: File.

• stats_bam: SAMtools stats output: Type: File.

RNA-Seq quantification and QC workflow using TPMCalculator

This workflow uses TPMCalculator to quantify the abundance of genes and transcripts from the sorted BAM file.
Additionally, RSeQC is executed to generate multiple quality control outputs from the sorted BAM file. At the end, a
TDF file is generated using igvtools from the BAM file for a quick visualization.

2.1. Differential Gene expression from RNA-Seq data 15

https://github.com/ncbi/TPMCalculator
http://rseqc.sourceforge.net/
https://software.broadinstitute.org/software/igv/igvtools

pm4ngs, Release 0.0.1

16 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

Inputs

• gtf: Genome GTF file. Variable GENOME_GTF in the Jupyter Notebooks. Type: File. Required.

• genome_name: Genome name as defined in IGV for TDF conversion. Type: string. Required.

• q: Minimum MAPQ value to use reads. We recommend 255. Type: int. Required.

• r: Reference Genome in BED format used by RSeQC. Variable GENOME_BED in the Jupyter Notebooks.
Type: File. Required.

• sorted_bam: Sorted BAM file to quantify. Type: File. Required.

Outputs

• bam_to_tdf_out: TDF file created with igvtools from the BAM file for quick visualization. Type: File.

• gzip_gene_ent_out: TPMCalculator gene ENT output gzipped. Type: File.

• gzip_gene_out_out: TPMCalculator gene OUT output gzipped. Type: File.

• gzip_gene_uni_out: TPMCalculator gene UNI output gzipped. Type: File.

• gzip_transcripts_ent_out: TPMCalculator transcript ENT output gzipped. Type: File.

• gzip_transcripts_out_out: TPMCalculator transcript OUT output gzipped. Type: File.

• bam_stat_out: RSeQC BAM stats output. Type: File.

• experiment_out: RSeQC experiment output. Type: File.

• gzip_junction_annotation_bed_out: RSeQC junction annotation bed. Type: File.

• gzip_junction_annotation_xls_out: RSeQC junction annotation xls. Type: File.

• junction_annotation_pdf_out: RSeQC junction annotation PDF figure. Type: File.

• junction_saturation_out: RSeQC junction saturation output. Type: File.

• read_distribution_out: RSeQC read distribution output. Type: File.

• read_quality_out: RSeQC read quality output. Type: File.

Differential Gene Expression analysis from RNA-Seq data

Our notebooks are designed to execute a Differential Gene Expression analysis using two available tools: DESeq2 and
EdgeR. Also, the results for the interception of both tools output is reported with volcano plots, heatmaps and PCA
plots.

The workflow use the factors.txt file to generate an array with all combinations of conditions. The code to generate
this array is very simple and can be found in the cell number 3 in the 05 - DGA.ipynb notebook.

comparisons = []
for s in itertools.combinations(factors['condition'].unique(), 2):

comparisons.append(list(s))

Let’s suppose we have a factors.txt file with three conditions: cond1, cond2 and cond3. The comparisons array will
look like:

2.1. Differential Gene expression from RNA-Seq data 17

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html

pm4ngs, Release 0.0.1

comparisons = [
['cond1', 'cond2'],
['cond1', 'cond3'],
['cond2', 'cond3']

]

To avoid this behavior and execute the comparison just in a set of conditions, you should remove the code in the cell
number 3 in the 05 - DGA.ipynb notebook and manually create the array of combinations to be compared as:

comparisons = [
['cond1', 'cond3'],

]

The R code used for running DESeq2 is embedded in deseq2-2conditions.cwl from line 14 to line 178. The R code
used for running EdgeR is embedded in edgeR-2conditions.cwl from line 14 to line 165.

A table with DGA plots is generated for each condition in the 00 - Project Report.ipynb as shown next.

18 Chapter 2. Links to available data analysis workflows

https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/R/deseq2-2conditions.cwl#L14
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/R/edgeR-2conditions.cwl#L14

pm4ngs, Release 0.0.1

2.1. Differential Gene expression from RNA-Seq data 19

pm4ngs, Release 0.0.1

GO enrichment from RNA-Seq data

The GO enrichment analysis is executed with an in-house developed python package named goenrichment. This tools
uses the hypergeometric distribution test to estimate the probability of successes in selecting GO terms from a list of
differentially expressed genes. The GO terms are represented as a network using the python library NetworkX.

The tool uses a pre-computed database, currently available for human and mouse, at https://ftp.ncbi.nlm.nih.gov/pub/
goenrichment/. However, the project web page describe how to create your own database from a set of reference
databases.

The workflow uses the factors.txt file to generate an array with all combinations of conditions. The code to generate
this array is very simple and can be found in the cell number 3 in the 06 - GO enrichment.ipynb notebook.

comparisons = []
for s in itertools.combinations(factors['condition'].unique(), 2):

comparisons.append(list(s))

Let’s suppose we have a factors.txt file with three conditions: cond1, cond2 and cond3. The comparisons array will
look like:

comparisons = [
['cond1', 'cond2'],
['cond1', 'cond3'],
['cond2', 'cond3']

]

To avoid this behavior and execute the comparison just in a set of conditions, you should remove the code in the cell
number 3 in the 06 - GO enrichment.ipynb notebook and manually create the array of combinations to be compared
as:

comparisons = [
['cond1', 'cond3'],

]

Additionally, the workflow requires three cutoff that are defined in the cell number 5 of the same notebook.

min_category_depth=4
min_category_size=3
max_category_size=500

Cutoffs definition

• min_category_depth: Min GO term graph depth to include in the report. Default: 4

• min_category_size: Min number of gene in a GO term to include in the report. Default: 3

• max_category_size: Max number of gene in a GO term to include in the report. Default: 500

A table with GO terms plots is generated for each condition in the 00 - Project Report.ipynb as shown next. In these
plots the red bars are for GO terms selected from the over expressed genes and the blue bars are for GO terms selected
from the under expressed genes. It is important to clarify that the two sets of GO terms don’t overlap each other.

20 Chapter 2. Links to available data analysis workflows

https://pypi.org/project/goenrichment/
https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://networkx.github.io/
https://ftp.ncbi.nlm.nih.gov/pub/goenrichment/goenrichDB_human.pickle
https://ftp.ncbi.nlm.nih.gov/pub/goenrichment/goenrichDB_mouse.pickle
https://ftp.ncbi.nlm.nih.gov/pub/goenrichment/
https://ftp.ncbi.nlm.nih.gov/pub/goenrichment/

pm4ngs, Release 0.0.1

2.1.5 Test Project

A test project is available (read-only) at https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/rnaseq-sra-paired

2.1.6 Extra requirements

Creating STAR indexes

This workflow uses STAR for sequence alignment. The STAR index creation is not included in the workflow, that’s
why we are including an small section here to describe how the STAR indexes can be created.

The genome.fa and genes.gtf files should be copied to the genome directory.

localhost:~> conda activate /home/veraalva/rnaseq-sra-paired/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/rnaseq-sra-paired/bin/jupyter
localhost:~> cd rnaseq-sra-paired/data
localhost:~> mkdir genome
localhost:~> cd genome
localhost:~> mkdir STAR
localhost:~> cd STAR
localhost:~> cwl-runner --no-container ../../../bin/cwl-ngs-workflows-cbb/tools/STAR/
→˓star-index.cwl --runThreadN 16 --genomeDir . --genomeFastaFiles ../genome.fa --
→˓sjdbGTFfile ../genes.gtf (continues on next page)

2.1. Differential Gene expression from RNA-Seq data 21

https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/rnaseq-sra-paired

pm4ngs, Release 0.0.1

(continued from previous page)

localhost:~> cd ..
localhost:~> tree
.

genes.gtf
genome.fa
STAR

chrLength.txt
chrNameLength.txt
chrName.txt
chrStart.txt
exonGeTrInfo.tab
exonInfo.tab
geneInfo.tab
Genome
genomeParameters.txt
Log.out
SA
SAindex
sjdbInfo.txt
sjdbList.fromGTF.out.tab
sjdbList.out.tab
transcriptInfo.tab

1 directory, 18 files

Here all files inside the directory STAR are created by the workflow.

Creating BED files from GTF

For generating a BED file from a GTF.

The genes.gtf file should be copied to the genome directory.

localhost:~> conda activate /home/veraalva/rnaseq-sra-paired/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/rnaseq-sra-paired/bin/jupyter
localhost:~> cd rnaseq-sra-paired/data
localhost:~> mkdir genome
localhost:~> cd genome
localhost:~> cwl-runner --no-container ../../bin/cwl-ngs-workflows-cbb/workflows/UCSC/
→˓gtftobed.cwl --gtf genes.gtf
localhost:~> tree
.

genes.bed
genes.genePred
genes.gtf
genome.fa

0 directory, 4 files

Here the files genes.bed and genes.genePred are created from the workflow.

22 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

2.2 Differential Binding detection from ChIP-Seq data

Warning: Read the Background Information before proceeding with these steps

Warning: Read the Project Templates Installation notes to have the cookiecutter available in you shell depending
on the execution environment you will be using.

2.2.1 Samples description file

A TSV file named factors.txt is the main file for the projects and workflow. This file should be created before any
project creation. It is the base of the workflow and should be copied to the folder data/{{dataset_name}} just after
creating the project structure.

The initial sample names, file name prefixes and metadata are specified on it.

It should have the following columns:

id SampleID condition replicate
classical01 SRR4053795 classical 1
classical01 SRR4053796 classical 2
nonclassical01 SRR4053802 nonclassical 1
nonclassical01 SRR4053803 nonclassical 2

Warning: Columns names are required and are case sensitive.

Columns

• id: Sample names. It can be different of sample file name.

• SampleID: This is the prefix of the sample file name.

For single-end data the prefix ends in the file extension. In this case, for the first column, a file name named
SRR4053795.fastq.gz must exist.

For paired-end data the files SRR4053795_1.fastq.gz and SRR4053795_2.fastq.gz must exist.

The data files should be copied to the folder data/{{dataset_name}}/.

• condition: Conditions to analyze or group the samples. Avoid using non alphanumeric characters.

For RNASeq projects the differential gene expression will be generated comparing these conditions. If there
are multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPSeq projects differential binding events will be detected comparing these conditions. If there are
multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPexo projects the samples of the same condition will be grouped for the peak calling with MACE.

• replicate: Replicate number for samples.

2.2. Differential Binding detection from ChIP-Seq data 23

pm4ngs, Release 0.0.1

2.2.2 Installation

ChIP-Seq workflow with Conda/Bioconda

The ChIP-Seq project structure is created using the conda environment named templates.

First step is to activate the templates environment:

localhost:~> conda activate templates

Then, a YAML file (for this example I will call this file: chipseq-hmgn1.yaml) with your project detail should be
created.

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "chipseq-hmgn1"
5 dataset_name: "PRJNA481982"
6 is_data_in_SRA: "y"
7 ngs_data_type: "ChIP-Seq"
8 sequencing_technology: "paired-end"
9 create_demo: "y"

10 number_spots: "2000000"
11 organism: "mouse"
12 genome_dir: "/gfs/data/genomes/igenomes/Homo_sapiens/UCSC/Mus_musculus/mm9"
13 genome_name: "mm9"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/BWA"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/genome.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/genes.gtf"
17 genome_gff: "{{ cookiecutter.genome_dir}}/genes.gff"
18 genome_gff3: "{{ cookiecutter.genome_dir}}/genes.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/genes.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/mm9.chrom.sizes"
21 genome_mappable_size: "mm9"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/mm9-blacklist.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "n"
26 pull_images: "n"
27 use_conda: "y"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "n"
31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the chipseq-hmgn1.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file chipseq-hmgn1.yaml https://github.
→˓com/ncbi/pm4ngs.git
Checking ChIP-Seq workflow dependencies Done
localhost:~>

This process should create a project organizational structure like this:

24 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

localhost:~> tree chipseq-hmgn1
chipseq-hmgn1

bin
bioconda (This directory include a conda envs for all bioinfo tools)
cwl-ngs-workflows-cbb (CWL workflow repo cloned here)
jupyter (This directory include a conda envs for Jupyter notebooks)

config
init.py

data
PRJNA481982

doc
index.html
LICENSE
notebooks

00\ -\ Project\ Report.ipynb
01\ -\ Pre-processing\ QC.ipynb
02\ -\ Samples\ trimming.ipynb
03\ -\ Alignments.ipynb
04\ -\ Peak\ Calling.ipynb

README.md
requirements

python.txt
results

PRJNA481982
src
tmp

12 directories, 9 files

Now you should copied the factors.txt file to the folder: data/PRJNA481982.

After this process, cookiecutter should have created create two virtual environment for this workflow.

The first one is for running the Jupyter notebooks which require Python 3.6+ and it is named: jupyter. It can be
manually installed as described in here.

The second environment is be used to install all Bioinformatics tools required by the workflow and it will be named:
bioconda.

You can verify the environments running this command:

localhost:~> conda env list
conda environments:
#
base * /gfs/conda
tempates /gfs/conda/envs/templates

/home/veraalva/chipseq-hmgn1/bin/bioconda
/home/veraalva/chipseq-hmgn1/bin/jupyter

localhost:~>

Please, note that the Conda prefix /gfs/conda will be different in you host. Also, note that the bioconda and jupyter
envs are inside the bin directory of your project keeping them static inside the project organizational structure.

ChIP-Seq workflow usage with Conda/Bioconda

For start using the workflow you need to activate the conda environments bioconda and jupyter.

2.2. Differential Binding detection from ChIP-Seq data 25

pm4ngs, Release 0.0.1

localhost:~> conda activate /home/veraalva/chipseq-hmgn1/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/chipseq-hmgn1/bin/jupyter

Note the –stack option to have both environment working at the same time. Also, the order is important, bioconda
should be activated before jupyter.

Test the conda envs:

localhost:~> which fastqc
/home/veraalva/chipseq-hmgn1/bin/bioconda/bin/fastqc
localhost:~> which jupyter
/home/veraalva/chipseq-hmgn1/bin/jupyter/bin/jupyter

Note that the fastqc tools is installed in the bioconda env and the jupyter command is installed in the jupyter env.

Then, you can start the jupyter notebooks.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navegate in your browser to the notebooks folder and start executing all notebooks by their order
leaving the 00 - Project Report.ipynb to the end.

ChIP-Seq workflow with Docker

In this case, the ChIP-Seq project structure is created using the Python virtual environment as described here

First step is to activate the Python virtual environment.

localhost:~> source venv-templates/bin/activate

Then, a YAML file (for this example I will call this file: chipseq-hmgn1.yaml) with your project detail should be
created.

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "chipseq-hmgn1"
5 dataset_name: "PRJNA481982"
6 is_data_in_SRA: "y"
7 ngs_data_type: "ChIP-Seq"
8 sequencing_technology: "paired-end"
9 create_demo: "y"

10 number_spots: "2000000"
11 organism: "mouse"
12 genome_dir: "/gfs/data/genomes/igenomes/Homo_sapiens/UCSC/Mus_musculus/mm9"
13 genome_name: "mm9"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/BWA"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/genome.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/genes.gtf"
17 genome_gff: "{{ cookiecutter.genome_dir}}/genes.gff"

(continues on next page)

26 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

(continued from previous page)

18 genome_gff3: "{{ cookiecutter.genome_dir}}/genes.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/genes.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/mm9.chrom.sizes"
21 genome_mappable_size: "mm9"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/mm9-blacklist.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "y"
26 pull_images: "y"
27 use_conda: "n"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "y"
31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the chipseq-hmgn1.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file chipseq-paired.yaml https://
→˓github.com/ncbi/pm4ngs.git
Cloning Git repo: https://github.com/ncbi/cwl-ngs-workflows-cbb to /home/veraalva/
→˓chipseq-hmgn1/bin/cwl-ngs-workflows-cbb
Creating a Python3.7 virtualenv
Installing packages in: /home/veraalva/chipseq-hmgn1/venv using file /home/veraalva/
→˓chipseq-hmgn1/requirements/python.txt
Checking ChIP-Seq workflow dependencies .

Pulling image: quay.io/biocontainers/fastqc:0.11.8--1 . Done .
Pulling image: quay.io/biocontainers/trimmomatic:0.39--1 . Done .
Pulling image: quay.io/biocontainers/bwa:0.7.17--h84994c4_5 . Done .
Pulling image: quay.io/biocontainers/bedtools:2.28.0--hdf88d34_0 . Done .
Pulling image: quay.io/biocontainers/bcftools:1.9--h5c2b69b_5 . Done .
Pulling image: quay.io/biocontainers/phantompeakqualtools:1.2--1 . Done .
Pulling image: quay.io/biocontainers/samtools:1.9--h91753b0_8 . Done .
Pulling image: quay.io/biocontainers/rseqc:3.0.0--py_3 . Done .
Pulling image: quay.io/biocontainers/sra-tools:2.9.6--hf484d3e_0 . Done .
Pulling image: quay.io/biocontainers/igvtools:2.5.3--0 . Done .
Pulling image: quay.io/biocontainers/macs2:2.1.2--py27r351h14c3975_1 . Done .
Pulling image: quay.io/biocontainers/homer:4.10--pl526hc9558a2_0 . Done .
Pulling image: ubuntu:18.04 . Done
Building image: r-3.5_ubuntu-18.04 . Done Done

localhost:~>

This process should create a project organizational structure like this:

localhost:~> tree chipseq-hmgn1
chipseq-hmgn1
.

bin
cwl-ngs-workflows-cbb (CWL workflow repo cloned here)

config
init.py

data
PRJNA481982

doc

(continues on next page)

2.2. Differential Binding detection from ChIP-Seq data 27

pm4ngs, Release 0.0.1

(continued from previous page)

index.html
LICENSE
notebooks

00 - Project Report.ipynb
01 - Pre-processing QC.ipynb
02 - Samples trimming.ipynb
03 - Alignments.ipynb
04 - Peak Calling.ipynb

README.md
requirements

python.txt
results

PRJNA481982
src
tmp
venv

bin
etc
include
lib
lib64 -> lib
LICENSE.txt
locale
README.md
README.rst
setup.cfg
share

20 directories, 14 files

Now you should copied the factors.txt file to the directory: data/PRJNA481982.

After this process, cookiecutter should have pulled all docker images require by the project.

ChIP-Seq workflow usage with Docker

For start using the workflow you need to activate the Python environment inside the project.

localhost:~> source venv/bin/activate

Then, you can start the jupyter notebooks now.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navigate in your browser to the notebooks directory and start executing all notebooks by their
order leaving the 00 - Project Report.ipynb to the end.

2.2.3 Jupyter Notebook Server

28 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

Top-level directories from the Jupyter server viewed in a web browser

Notebook generated fro the ChIP-Seq data analysis

2.2. Differential Binding detection from ChIP-Seq data 29

pm4ngs, Release 0.0.1

2.2.4 CWL workflows

SRA download and QC workflow

This CWL workflow is designed to download FASTQ files from the NCBI SRA database using fastq-dump and then,
execute fastqc generating a quality control report of the sample.

Inputs

• accession: SRA accession ID. Type: string. Required.

• aligned: Used it to download only aligned reads. Type: boolean. Optional.

• split-files: Dump each read into separate file. Files will receive suffix corresponding to read number. Type:
boolean. Optional.

• threads: Number of threads. Type: int. Default: 1. Optional.

• X: Maximum spot id. Optional.

30 Chapter 2. Links to available data analysis workflows

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

pm4ngs, Release 0.0.1

Outputs

• output: Fastq files downloaded. Type: File[]

• out_zip: FastQC report ZIP file. Type: File[]

• out_html: FastQC report HTML. Type: File[]

Samples Trimming

Our workflows uses Trimmomatic for read trimming. The Jupyter notebooks uses some basic Trimmomatic options
that need to be modified depending on the FastQC quality control report generated for the sample.

BWA based alignment and quality control workflow

This workflow use BWA as base aligner. It also use SAMtools and bedtools for file conversion and statistics report.
Finally, Phantompeakqualtools is used to generate quality control report for the processed samples.

Inputs

• genome_index: Aligner indexes directory. Type: Directory. Required. Variable ALIGNER_INDEX in the
Jupyter Notebooks.

• genome_prefix: Prefix of the aligner indexes. Generally, it is the name of the genome FASTA file. It can be
used as os.path.basename(GENOME_FASTA) in the Jupyter Notebooks. Type: string. Required.

• readsquality: Minimum MAPQ value to use reads. We recommend for ChIP_exo dataa value of: 30. Type:
int. Required.

• threads: Number of threads. Type: int. Default: 1. Optional.

• subsample_nreads: Number of reads to be used for the subsample. We recomend for ChIP_exo dataa value
of: 500000. Type: int. Required.

2.2. Differential Binding detection from ChIP-Seq data 31

http://www.usadellab.org/cms/?page=trimmomatic
http://bio-bwa.sourceforge.net/
http://www.htslib.org/
https://bedtools.readthedocs.io/en/latest/
https://github.com/kundajelab/phantompeakqualtools

pm4ngs, Release 0.0.1

• reads: FastQ file to be processed. Type: File. Required.

Outputs

• bam_flagstat_out: SAMtools flagstats for unfiltered BAM file. Type: File.

• bam_stats_out: SAMtools stats for unfiltered BAM file. Type: File.

• final_bam_flagstat_out: SAMtools flagstats for filtered BAM file. Type: File.

• bed_file_out:: Aligned reads in BED format. Type: File.

• final_bam_out: Final BAM file filtered and sorted. Type: File.

• bam_index_out: BAM index file. Type: File.

• pbc_out: Library complexity report. Type: File.

• phantompeakqualtools_output_out: Phantompeakqualtools main output. Type: File.

• phantompeakqualtools_output_savp: Phantompeakqualtools SAVP output. Type: File.

• subsample_pseudoreplicate_gzip_out: Subsample pseudoreplicates tagAlign gzipped. Type: File[].

• subsample_tagalign_out: Subsample tagAlign gzipped. Type: File[].

• subsample_subsample_out: Subsample shuffled tagAlign gzipped. Type: File[].

Peak caller workflow using MACS2

This workflow uses MACS2 as peak caller tool. The annotation is created using Homer and TDF files are created with
igvtools.

MACS2 is executed two times. First, the cutoff-analysis option is used to execute a cutoff value analysis which is
used to estimate a proper value for the p-value used by MACS2 (for more detailed explanation read this thread).

32 Chapter 2. Links to available data analysis workflows

https://github.com/taoliu/MACS
http://homer.ucsd.edu/homer/
https://software.broadinstitute.org/software/igv/igvtools
https://github.com/taoliu/MACS
https://github.com/taoliu/MACS/issues/151#issuecomment-249908402

pm4ngs, Release 0.0.1

RSeQC is also executed for quality control.

Inputs

• homer_genome: Homer genome name. Type: string. Required.

• genome_fasta Genome FASTA file. Type: File. Required. Variable GENOME_FASTA in the Jupyter
Notebooks.

• genome_gtf: Genome GTF file. Type: File. Required. Variable GENOME_GTF in the Jupyter Notebooks.

• tagAlign_gz: Tag aligned file created with the BWA based alignment and quality control workflow. Type:
File. Required.

• macs_callpeaks_g: Genome mapeable size as defined in MACS2. Type: string. Required. Variable
GENOME_MAPPABLE_SIZE in the Jupyter Notebooks.

• macs_callpeaks_q: MACS2 q option. Starting qvalue (minimum FDR) cutoff to call significant regions.
Type: float. Required. Variable fdr in the Jupyter Notebooks.

• nomodel: MACS2 nomodel option. MACS will bypass building the shifting model. Type: boolean. Optional.

• extsize: MACS2 extsize option. MACS uses this parameter to extend reads in 5’->3’ direction to fix-sized
fragments. Type: int. Optional.

2.2. Differential Binding detection from ChIP-Seq data 33

http://rseqc.sourceforge.net/

pm4ngs, Release 0.0.1

Outputs

• readQC_plots: RSeQC plots. Type: File[]

• macs_cutoff_pdf MACS2 cutoff analysis plot in PDF format. Type: File

• macs_cutoff_inflection: MACS2 inflection q value used for the second round. Type: File

• macs_callpeak_q_value_narrowPeak: Final MACS2 narrowpeak file. Type: File

• macs_callpeak_q_value_xls: Final MACS2 XLS file. Type: File

• macs_callpeak_q_value_bed: Final MACS2 BED file. Type: File

• homer_annotate_peaks_output: Homer annotated BED file. Type: File

• homer_annotate_peaks_annStats: Homer annotation statistics. Type: File

• lambda_tdf_out: MACS2 lambda file in TDF format. Type: File

• pileup_tdf_out: MACS2 pileup file in TDF format. Type: File

Differential binding analysis with Diffbind

Differential binding event is detected with Diffbind. Thsi tool will be executed for all comparisons added to the
comparisons array. See cell number 3 in the notebook 05 - Differential binding analysis.ipynb (ChIP-Seq workflow).

Inputs

• bamDir: Directory with the BAM files. Type: Directory. Required.

• bedDir: Directory with BED files created from MACS2 peak calling workflow Type: Directory. Required.

Outputs

• outpng: PNG files created from Diffbind. Type File[]

• outxls: XLS files created from Diffbind. Type: File[]

• outbed BED files created from Diffbind. Type: File[]

2.2.5 Test Project

A test project is available (read-only) at https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipseq-hmgn1

2.2.6 Extra requirements

Configuring Homer databases

Homer needs organism, promoter and genome databases for the annotation process. These databases are not distributed
with the default installation package.

34 Chapter 2. Links to available data analysis workflows

https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/R/DiffBind.cwl
https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipseq-hmgn1

pm4ngs, Release 0.0.1

The users need to install the specific databases for the organism analyzed in their projects. The next example is for
mouse.

Using Conda

localhost:~> conda activate /home/veraalva/chipseq-hmgn1/bin/bioconda
localhost:~> perl /home/veraalva/chipseq-hmgn1/bin/bioconda/share/homer-4.10-0/
→˓configureHomer.pl -install mouse-o mouse-p mm9
localhost:~> perl /home/veraalva/chipseq-hmgn1/bin/bioconda/share/homer-4.10-0/
→˓configureHomer.pl -list | grep -v "^-"

Current base directory for HOMER is /home/veraalva/chipseq-hmgn1/bin/bioconda/
→˓share/homer-4.10-0/

--2019-08-30 12:05:27-- http://homer.ucsd.edu/homer/update.txt
Resolving homer.ucsd.edu (homer.ucsd.edu)... 169.228.63.226
Connecting to homer.ucsd.edu (homer.ucsd.edu)|169.228.63.226|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 16187 (16K) [text/plain]
Saving to: ‘/home/veraalva/chipseq-hmgn1/bin/bioconda/share/homer-4.10-0//update.txt’

/gfs/projects/ngs_templates/cookiecutter/chips 100
→˓%[===>
→˓] 15.81K --.-KB/s in 0.07s

2019-08-30 12:05:28 (211 KB/s) - ‘/home/veraalva/chipseq-hmgn1/bin/bioconda/share/
→˓homer-4.10-0//update.txt’ saved [16187/16187]

Updating Settings...
Packages with name conflicts have a trailing -o, -p, or -g
Version Installed Package Version Description
SOFTWARE
+ homer v4.10.4 Code/Executables, ontologies, motifs for HOMER
ORGANISMS
+ mouse-o v6.0 Mus musculus (mouse) accession and ontology information
PROMOTERS
+ mouse-p v5.5 mouse promoters (mouse)
GENOMES
+ mm9 v6.0 mouse genome and annotation for UCSC mm9
SETTINGS

Using Docker

A directory named data/homer will be used to store all homer configuration and databases.

localhost:~> cd chipseq-hmgn1/data
localhost:~> mkdir -p homer
localhost:~> docker run -u `id -u`:`id -g` -i -t -v `pwd`/homer:/data quay.io/
→˓biocontainers/homer:4.10--pl526hc9558a2_0 cp /usr/local/share/homer-4.10-0/config.
→˓txt /data/
localhost:~> docker run -u `id -u`:`id -g` -i -t -v `pwd`/homer:/data quay.io/
→˓biocontainers/homer:4.10--pl526hc9558a2_0 cp /usr/local/share/homer-4.10-0/update.
→˓txt /data/
localhost:~> docker run -u `id -u`:`id -g` -i -t -v `pwd`/homer:/data quay.io/
→˓biocontainers/homer:4.10--pl526hc9558a2_0 cp -rf /usr/local/share/homer-4.10-0/data
→˓/data/
localhost:~> docker run -i -t -v `pwd`/homer/config.txt:/usr/local/share/homer-4.10-0/
→˓config.txt -v `pwd`/homer/update.txt:/usr/local/share/homer-4.10-0/update.txt -v
→˓`pwd`/homer/data:/usr/local/share/homer-4.10-0/data quay.io/biocontainers/homer:4.
→˓10--pl526hc9558a2_0 perl /usr/local/share/homer-4.10-0/configureHomer.pl -install
→˓mouse-o mouse-p mm9

(continues on next page)

2.2. Differential Binding detection from ChIP-Seq data 35

pm4ngs, Release 0.0.1

(continued from previous page)

localhost:~> docker run -i -t -v `pwd`/homer/config.txt:/usr/local/share/homer-4.10-0/
→˓config.txt -v `pwd`/homer/update.txt:/usr/local/share/homer-4.10-0/update.txt -v
→˓`pwd`/homer/data:/usr/local/share/homer-4.10-0/data quay.io/biocontainers/homer:4.
→˓10--pl526hc9558a2_0 perl /usr/local/share/homer-4.10-0/configureHomer.pl -list |
→˓grep -v "^-"

Current base directory for HOMER is /usr/local/share/homer-4.10-0/

Connecting to homer.ucsd.edu (169.228.63.226:80)
update.txt 100% |*******************************| 16187 0:00:00 ETA

Updating Settings...
Packages with name conflicts have a trailing -o, -p, or -g
Version Installed Package Version Description
SOFTWARE
+ homer v4.10.4 Code/Executables, ontologies, motifs for HOMER
ORGANISMS
+ mouse-o v6.0 Mus musculus (mouse) accession and ontology information
PROMOTERS
+ mouse-p v5.5 mouse promoters (mouse)
GENOMES
+ mm9 v6.0 mouse genome and annotation for UCSC mm9
SETTINGS

2.3 Detection of binding events from ChIP-exo data

Warning: Read the Background Information before proceeding with these steps

Warning: Read the Project Templates Installation notes to have the cookiecutter available in you shell depending
on the execution environment you will be using.

2.3.1 Samples description file

A TSV file named factors.txt is the main file for the projects and workflow. This file should be created before any
project creation. It is the base of the workflow and should be copied to the folder data/{{dataset_name}} just after
creating the project structure.

The initial sample names, file name prefixes and metadata are specified on it.

It should have the following columns:

id SampleID condition replicate
classical01 SRR4053795 classical 1
classical01 SRR4053796 classical 2
nonclassical01 SRR4053802 nonclassical 1
nonclassical01 SRR4053803 nonclassical 2

36 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

Warning: Columns names are required and are case sensitive.

Columns

• id: Sample names. It can be different of sample file name.

• SampleID: This is the prefix of the sample file name.

For single-end data the prefix ends in the file extension. In this case, for the first column, a file name named
SRR4053795.fastq.gz must exist.

For paired-end data the files SRR4053795_1.fastq.gz and SRR4053795_2.fastq.gz must exist.

The data files should be copied to the folder data/{{dataset_name}}/.

• condition: Conditions to analyze or group the samples. Avoid using non alphanumeric characters.

For RNASeq projects the differential gene expression will be generated comparing these conditions. If there
are multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPSeq projects differential binding events will be detected comparing these conditions. If there are
multiple conditions all comparisons will be generated. It must be at least two conditions.

For ChIPexo projects the samples of the same condition will be grouped for the peak calling with MACE.

• replicate: Replicate number for samples.

2.3.2 Installation

ChIP-exo workflow with Conda/Bioconda

The ChIP-exo project structure is created using the conda environment named templates.

First step is to activate the templates environment:

localhost:~> conda activate templates

Then, a YAML file (for this example I will call this file: chipexo-single.yaml) with your project detail should be
created.

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "chipexo-single"
5 dataset_name: "PRJNA338159"
6 is_data_in_SRA: "y"
7 ngs_data_type: "ChIP-exo"
8 sequencing_technology: "single-end"
9 create_demo: "n"

10 number_spots: "1000000"
11 organism: "human"
12 genome_dir: "/gfs/data/genomes/NCBI/Escherichia_coli/K-12/MG1655/"
13 genome_name: "NC_000913.3"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/BWA"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/NC_000913.3.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/NC_000913.3.gtf"

(continues on next page)

2.3. Detection of binding events from ChIP-exo data 37

pm4ngs, Release 0.0.1

(continued from previous page)

17 genome_gff: "{{ cookiecutter.genome_dir}}/NC_000913.3.gff"
18 genome_gff3: "{{ cookiecutter.genome_dir}}/NC_000913.3.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/NC_000913.3.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/NC_000913.3.sizes"
21 genome_mappable_size: "3714120"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/NC_000913.3.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "n"
26 pull_images: "n"
27 use_conda: "y"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "n"
31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the chipexo-single.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file chipexo-single.yaml https://github.
→˓com/ncbi/pm4ngs.git
Checking ChIP-exo workflow dependencies Done
localhost:~>

This process should create a project organizational structure like this:

localhost:~> tree chipexo-single
chipexo-single

bin
bioconda (This directory include a conda envs for all bioinfo tools)
cwl-ngs-workflows-cbb (CWL workflow repo cloned here)
jupyter (This directory include a conda envs for Jupyter notebooks)

config
init.py

data
PRJNA338159

index.html
LICENSE
notebooks

00 - Project Report.ipynb
01 - Pre-processing QC.ipynb
02 - Samples trimming.ipynb
03 - Alignments.ipynb
04 - Peak Calling.ipynb
05 - MEME Motif.ipynb

README.md
requirements

python.txt
results

PRJNA338159
src
tmp

10 directories, 11 files

38 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

Now you should copied the factors.txt file to the folder: data/PRJNA338159.

After this process, cookiecutter should have created create two virtual environment for this workflow.

The first one is for running the Jupyter notebooks which require Python 3.6+ and it is named: jupyter. It can be
manually installed as described in here.

The second environment is be used to install all Bioinformatics tools required by the workflow and it will be named:
bioconda.

You can verify the environments running this command:

localhost:~> conda env list
conda environments:
#
base * /gfs/conda
tempates /gfs/conda/envs/templates

/home/veraalva/chipexo-single/bin/bioconda
/home/veraalva/chipexo-single/bin/jupyter

localhost:~>

Please, note that the Conda prefix /gfs/conda will be different in you host. Also, note that the bioconda and jupyter
envs are inside the bin directory of your project keeping them static inside the project organizational structure.

ChIP-exo workflow usage with Conda/Bioconda

For start using the workflow you need to activate the conda environments bioconda and jupyter.

localhost:~> conda activate /home/veraalva/chipexo-single/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/chipexo-single/bin/jupyter

Note the –stack option to have both environment working at the same time. Also, the order is important, bioconda
should be activated before jupyter.

Test the conda envs:

localhost:~> which fastqc
/home/veraalva/chipexo-single/bin/bioconda/bin/fastqc
localhost:~> which jupyter
/home/veraalva/chipexo-single/bin/jupyter/bin/jupyter

Note that the fastqc tools is installed in the bioconda env and the jupyter command is installed in the jupyter env.

Then, you can start the jupyter notebooks.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navegate in your browser to the notebooks folder and start executing all notebooks by their order
leaving the 00 - Project Report.ipynb to the end.

2.3. Detection of binding events from ChIP-exo data 39

pm4ngs, Release 0.0.1

ChIP-exo workflow with Docker

In this case, the ChIP-exo project structure is created using the Python virtual environment as described here

First step is to activate the Python virtual environment.

localhost:~> source venv-templates/bin/activate

Then, a YAML file (for this example I will call this file: chipexo-single.yaml) with your project detail should be
created.

1 default_context:
2 author_name: "Roberto Vera Alvarez"
3 user_email: "veraalva@ncbi.nlm.nih.gov"
4 project_name: "chipexo-single"
5 dataset_name: "PRJNA338159"
6 is_data_in_SRA: "y"
7 ngs_data_type: "ChIP-exo"
8 sequencing_technology: "single-end"
9 create_demo: "n"

10 number_spots: "1000000"
11 organism: "human"
12 genome_dir: "/gfs/data/genomes/NCBI/Escherichia_coli/K-12/MG1655/"
13 genome_name: "NC_000913.3"
14 aligner_index_dir: "{{ cookiecutter.genome_dir}}/BWA"
15 genome_fasta: "{{ cookiecutter.genome_dir}}/NC_000913.3.fa"
16 genome_gtf: "{{ cookiecutter.genome_dir}}/NC_000913.3.gtf"
17 genome_gff: "{{ cookiecutter.genome_dir}}/NC_000913.3.gff"
18 genome_gff3: "{{ cookiecutter.genome_dir}}/NC_000913.3.gff3"
19 genome_bed: "{{ cookiecutter.genome_dir}}/NC_000913.3.bed"
20 genome_chromsizes: "{{ cookiecutter.genome_dir}}/NC_000913.3.sizes"
21 genome_mappable_size: "3714120"
22 genome_blacklist: "{{ cookiecutter.genome_dir}}/NC_000913.3.bed"
23 fold_change: "2.0"
24 fdr: "0.05"
25 use_docker: "y"
26 pull_images: "y"
27 use_conda: "n"
28 cwl_runner: "cwl-runner"
29 cwl_workflow_repo: "https://github.com/ncbi/cwl-ngs-workflows-cbb"
30 create_virtualenv: "y"
31 use_gnu_parallel: "y"
32 max_number_threads: "16"

A full description of this parameters are here.

After the chipexo-single.yaml is created the project structure should be created using this command obtaining the
following output.

localhost:~> cookiecutter --no-input --config-file chipexo-single.yaml https://github.
→˓com/ncbi/pm4ngs.git
Checking ChIP-exo workflow dependencies Done
localhost:~>

This process should create a project organizational structure like this:

localhost:~> tree chipexo-single
chipexo-single

(continues on next page)

40 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

(continued from previous page)

bin
config

init.py
data

PRJNA338159
index.html
LICENSE
notebooks

00 - Project Report.ipynb
01 - Pre-processing QC.ipynb
02 - Samples trimming.ipynb
03 - Alignments.ipynb
04 - Peak Calling.ipynb
05 - MEME Motif.ipynb

README.md
requirements

python.txt
results

PRJNA338159
src
tmp
venv

11 directories, 11 files

Now you should copied the factors.txt file to the directory: data/PRJNA338159.

After this process, cookiecutter should have pulled all docker images require by the project.

ChIP-exo workflow usage with Docker

For start using the workflow you need to activate the Python environment inside the project.

localhost:~> source venv/bin/activate

Then, you can start the jupyter notebooks now.

localhost:~> jupyter notebook

If the workflow is deployed in a remote machine using SSH access the correct way to start the notebooks is:

localhost:~> jupyter notebook --no-browser --ip='0.0.0.0'

In this case the option –ip=’0.0.0.0’ will server the Jupyter notebook on all network interfaces and you can access
them from your desktop browser using the port returned by the Jupyter server.

Finally, you should navigate in your browser to the notebooks directory and start executing all notebooks by their
order leaving the 00 - Project Report.ipynb to the end.

2.3.3 Jupyter Notebook Server

2.3. Detection of binding events from ChIP-exo data 41

pm4ngs, Release 0.0.1

Top-level directories from the Jupyter server viewed in a web browser

Notebook generated fro the Chip-exo data analysis

42 Chapter 2. Links to available data analysis workflows

pm4ngs, Release 0.0.1

2.3.4 CWL workflows

SRA download and QC workflow

This CWL workflow is designed to download FASTQ files from the NCBI SRA database using fastq-dump and then,
execute fastqc generating a quality control report of the sample.

Inputs

• accession: SRA accession ID. Type: string. Required.

• aligned: Used it to download only aligned reads. Type: boolean. Optional.

• split-files: Dump each read into separate file. Files will receive suffix corresponding to read number. Type:
boolean. Optional.

• threads: Number of threads. Type: int. Default: 1. Optional.

• X: Maximum spot id. Optional.

2.3. Detection of binding events from ChIP-exo data 43

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

pm4ngs, Release 0.0.1

Outputs

• output: Fastq files downloaded. Type: File[]

• out_zip: FastQC report ZIP file. Type: File[]

• out_html: FastQC report HTML. Type: File[]

Samples Trimming

Our workflows uses Trimmomatic for read trimming. The Jupyter notebooks uses some basic Trimmomatic options
that need to be modified depending on the FastQC quality control report generated for the sample.

BWA based alignment and quality control workflow

This workflow use BWA as base aligner. It also use SAMtools and bedtools for file conversion and statistics report.
Finally, Phantompeakqualtools is used to generate quality control report for the processed samples.

Inputs

• genome_index: Aligner indexes directory. Type: Directory. Required. Variable ALIGNER_INDEX in the
Jupyter Notebooks.

• genome_prefix: Prefix of the aligner indexes. Generally, it is the name of the genome FASTA file. It can be
used as os.path.basename(GENOME_FASTA) in the Jupyter Notebooks. Type: string. Required.

• readsquality: Minimum MAPQ value to use reads. We recommend for ChIP_exo dataa value of: 30. Type:
int. Required.

• threads: Number of threads. Type: int. Default: 1. Optional.

• subsample_nreads: Number of reads to be used for the subsample. We recomend for ChIP_exo dataa value
of: 500000. Type: int. Required.

44 Chapter 2. Links to available data analysis workflows

http://www.usadellab.org/cms/?page=trimmomatic
http://bio-bwa.sourceforge.net/
http://www.htslib.org/
https://bedtools.readthedocs.io/en/latest/
https://github.com/kundajelab/phantompeakqualtools

pm4ngs, Release 0.0.1

• reads: FastQ file to be processed. Type: File. Required.

Outputs

• bam_flagstat_out: SAMtools flagstats for unfiltered BAM file. Type: File.

• bam_stats_out: SAMtools stats for unfiltered BAM file. Type: File.

• final_bam_flagstat_out: SAMtools flagstats for filtered BAM file. Type: File.

• bed_file_out:: Aligned reads in BED format. Type: File.

• final_bam_out: Final BAM file filtered and sorted. Type: File.

• bam_index_out: BAM index file. Type: File.

• pbc_out: Library complexity report. Type: File.

• phantompeakqualtools_output_out: Phantompeakqualtools main output. Type: File.

• phantompeakqualtools_output_savp: Phantompeakqualtools SAVP output. Type: File.

• subsample_pseudoreplicate_gzip_out: Subsample pseudoreplicates tagAlign gzipped. Type: File[].

• subsample_tagalign_out: Subsample tagAlign gzipped. Type: File[].

• subsample_subsample_out: Subsample shuffled tagAlign gzipped. Type: File[].

Peak caller workflow using MACE

This workflow uses MACE as peak caller tool. The annotation is created from the GTF file using a in-house python
script available here. BAMscale is used for the quantification of the resulting peaks.

2.3. Detection of binding events from ChIP-exo data 45

http://chipexo.sourceforge.net/
https://github.com/ncbi/cwl-ngs-workflows-cbb/blob/master/tools/python/annotate_bed_gtf.cwl
https://github.com/ncbi/BAMscale

pm4ngs, Release 0.0.1

Inputs

• chrom_size: Chromosome size file. Tab or space separated text file with 2 columns: first column
is chromosome name, second column is size of the chromosome. Type: File. Required. Variable
GENOME_CHROMSIZES in the Jupyter Notebooks.

• output_basename: Prefix for the output file. Type: string. Required.

• genome_gtf: Genome GTF file. Variable GENOME_GTF in the Jupyter Notebooks. Type: File. Required.

• tss_size: Number of bp to use for TSS definition. We recommend use 1000. Type: int. Required.

Outputs

• annotated_bed: Annotated detected peaks in BED format. Type: File

MEME Motif detection workflow

Motif detection is executed using the MEME suite.

Inputs

• bed: BED file with detected peaks. Type: File. Required.

• memedb: MEME database for use by Tomtom and CentriMo. Type: File. Required.

46 Chapter 2. Links to available data analysis workflows

http://meme-suite.org/

pm4ngs, Release 0.0.1

• genome: Genome FASTA file. Variable GENOME_FASTA in the Jupyter Notebooks. Type: File. Required.

• nmotifs: Maximum number of motifs to find. We recommend use 10. Type: int. Required.

Outputs

• meme_out: MEME output directory. Type: Directory

MEME databases

MEME workflow depends on the MEME databases. Go to the MEME Suite Download page: http://meme-suite.org/
doc/download.html

Download the latest version for the Motif Databases and GOMo Databases.

The downloaded files should be uncompressed in a directory data/meme. The final directory should be:

localhost:~> cd data
localhost:~> mkdir meme
localhost:~> cd meme
localhost:~> wget http://meme-suite.org/meme-software/Databases/motifs/motif_
→˓databases.12.18.tgz
localhost:~> wget http://meme-suite.org/meme-software/Databases/gomo/gomo_databases.3.
→˓2.tgz
localhost:~> tar xzf motif_databases.12.18.tgz
localhost:~> tar xzf gomo_databases.3.2.tgz
localhost:~> rm gomo_databases.3.2.tgz motif_databases.12.18.tgz
localhost:~> tree -d
.

gomo_databases
motif_databases

ARABD
CIS-BP
CISBP-RNA
ECOLI
EUKARYOTE
FLY
HUMAN
JASPAR
MALARIA
MIRBASE
MOUSE
PROKARYOTE
PROTEIN
RNA
TFBSshape
WORM
YEAST

19 directories

See also an example in our test project: https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipexo-single/data/

2.3. Detection of binding events from ChIP-exo data 47

http://meme-suite.org/doc/download.html
http://meme-suite.org/doc/download.html
https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipexo-single/data/

pm4ngs, Release 0.0.1

2.3.5 Test Project

A test project is available (read-only) at https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipexo-single/

2.3.6 Extra requirements

Creating BWA indexes

This workflow uses BWA for sequence alignment. The BWA index creation is not included in the workflow, that’s
why we are including an small section here to describe how the BWA indexes can be created.

The genome.fa file should be copied to the genome directory.

localhost:~> conda activate /home/veraalva/chipexo-single/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/chipexo-single/bin/jupyter
localhost:~> cd chipexo-single/data
localhost:~> mkdir genome
localhost:~> cd genome
localhost:~> mkdir BWA
localhost:~> cd BWA
localhost:~> cwl-runner --no-container ../../../bin/cwl-ngs-workflows-cbb/tools/BWA/
→˓bwa-index.cwl --sequences genome.fa
localhost:~> cd ..
localhost:~> tree
.

BWA
genome.fa
genome.fa.amb
genome.fa.ann
genome.fa.bwt
genome.fa.pac
genome.fa.sa

genome.fa

1 directory, 7 files

Here all files inside the directory BWA are created by the workflow.

Creating BED files from GTF

For generating a BED file from a GTF.

The genes.gtf file should be copied to the genome directory.

localhost:~> conda activate /home/veraalva/chipexo-single/bin/bioconda
localhost:~> conda activate --stack /home/veraalva/chipexo-single/bin/jupyter
localhost:~> cd chipexo-single/data
localhost:~> mkdir genome
localhost:~> cd genome
localhost:~> cwl-runner --no-container ../../bin/cwl-ngs-workflows-cbb/workflows/UCSC/
→˓gtftobed.cwl --gtf genes.gtf
localhost:~> tree
.

genes.bed
genes.genePred
genes.gtf

(continues on next page)

48 Chapter 2. Links to available data analysis workflows

https://ftp.ncbi.nlm.nih.gov/pub/pm4ngs/examples/chipexo-single/

pm4ngs, Release 0.0.1

(continued from previous page)

genome.fa

0 directory, 4 files

Here the files genes.bed and genes.genePred are created from the workflow.

2.3. Detection of binding events from ChIP-exo data 49

pm4ngs, Release 0.0.1

50 Chapter 2. Links to available data analysis workflows

CHAPTER

THREE

EXTRA LINKS

3.1 Project Templates Installation

3.1.1 Project Templates with Python virtual environment

Install Cookiecutter and other basic Python packages using the requirements.txt file.

localhost:~> virtualenv venv-templates
localhost:~> source venv-templates/bin/activate
localhost:~> pip install -r https://raw.githubusercontent.com/ncbi/pm4ngs/master/
→˓requirements.txt

3.1.2 Project Templates with Conda/BioConda

Conda should be already installed and configured.

localhost:~> wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.
→˓sh
localhost:~> sh Miniconda3-latest-MacOSX-x86_64.sh

A Conda virtual environment will be created with name templates using these instructions:

localhost:~> wget https://raw.githubusercontent.com/ncbi/pm4ngs/master/conda-
→˓requirements.yaml
localhost:~> conda env create -f conda-requirements.yaml

If Conda is installed with prefix /gfs/conda you should see the available environments like in this block:

localhost:~> conda env list
conda environments:
#
base /gfs/conda
templates * /gfs/conda/envs/templates

localhost:~>

To activate the templates env

localhost:~> conda activate templates
localhost:~>

51

https://github.com/conda/conda

pm4ngs, Release 0.0.1

3.1.3 Using the Template Project

This project template uses the workflow defined in the project cwl-ngs-workflows-cbb. Depending on the execution
environment selected: docker, conda or programs in the path the project template will check the availability of the
Bioinformatic tools required by the workflow.

3.2 Project Description YAML file

Cookiecutter accept a YAML file as a config file for the project template creation. This YAML file is created from the
parameters:

1 {
2 "author_name": "Roberto Vera Alvarez",
3 "email": "veraalva@ncbi.nlm.nih.gov",
4 "project_name": "my_ngs_project",
5 "dataset_name": "my_dataset_name",
6 "is_data_in_SRA": "y" or "n",
7 "ngs_data_type": ["RNA-Seq", "ChIP-Seq", "ChIP-exo"],
8 "sequencing_technology": ["single-end", "paired-end"],
9 "create_demo": "y" or "n",

10 "number_spots": "5000000",
11 "organism": "human",
12 "genome_dir": "/gfs/data/genomes/igenomes/Homo_sapiens/UCSC/hg19",
13 "genome_name": "hg19",
14 "aligner_index_dir": "{{ cookiecutter.genome_dir }}/ALIGNER",
15 "genome_fasta": "{{ cookiecutter.genome_dir }}/genome.fa",
16 "genome_gtf": "{{ cookiecutter.genome_dir }}/genome.gtf",
17 "genome_gff": "{{ cookiecutter.genome_dir }}/genome.gff",
18 "genome_gff3": "{{ cookiecutter.genome_dir }}/genome.gff3",
19 "genome_bed": "{{ cookiecutter.genome_dir }}/genome.bed",
20 "genome_chromsizes": "{{ cookiecutter.genome_dir }}/genome.sizes",
21 "genome_mappable_size": "hg19",
22 "genome_blacklist": "{{ cookiecutter.genome_dir }}/hg19-blacklist.bed",
23 "fold_change": "2.0",
24 "fdr": "0.05",
25 "use_docker": "y" or "n",
26 "pull_images": "y" or "n",
27 "use_conda": "y" or "n",
28 "cwl_runner": "cwl-runner",
29 "cwl_workflow_repo": "https://github.com/ncbi/cwl-ngs-workflows-cbb",
30 "create_virtualenv": "y" or "n",
31 "use_gnu_parallel": "y" or "n",
32 "max_number_threads": "16"
33 }

Parameters

• author_name: Project author name

• email: Author’s email

• project_name: Name of the project with no space nor especial characters. This will be used as project
folder’s name.

52 Chapter 3. Extra links

https://github.com/ncbi/cwl-ngs-workflows-cbb

pm4ngs, Release 0.0.1

• dataset_name: Dataset to process name with no space nor especial characters. This will be used as
folder name to group the data. This folder will be created under the data/{{dataset_name}} and re-
sults/{{dataset_name}}.

• is_data_in_SRA: If the data is in the SRA set this to y. A CWL workflow to download the data from the
SRA database to the folder data/{{dataset_name}} and execute FastQC on it will be included in the 01 -
Pre-processing QC.ipynb notebook.

If this option is set to n, the fastq files should be copied to the folder data/{{dataset_name}}/

• ngs_data_type: Select one of the available technologies to process:

1. RNA-Seq

2. ChIP-Seq

3. ChIP-exo

• sequencing_technology: Select one of the available sequencing technologies in your data:

1. single-end

2. paired-end

Mixed datasets with single and paired-end samples should be processed independently.

• create_demo: If the data is downloaded from the SRA and this option is set to y, then only the number of
spots specified in the next variable will be downloaded. Useful to test the workflow.

• number_spots: Number of sport to download from the SRA database. It is ignored is the create_demo is set
to n.

• organism: Organism to process, e.g. human. This is used to link the selected genes to the NCBI gene
database.

• genome_dir: Absolute path to the directory with the genome annotation to be used by the workflow.

• genome_name: Genome name , e.g. hg38 or mm10.

• aligner_index_dir: Absolute path to the directory with the aligner indexes.

• genome_fasta: Absolute path to the directory to the genome fasta.

• genome_gtf: Absolute path to the directory with the genome GTF.

• genome_gff: Absolute path to the directory with the genome GFF.

• genome_gff3: Absolute path to the directory with the genome GFF3.

• genome_bed: Absolute path to the directory with the genome BED. All these files are note required to exist.
It depends on the workflow executed.

• genome_chromsizes: Genome chromosome sizes file like hg19.chrom.sizes.

• genome_mappable_size: Genome mappable size used by MACS. For human can be hg38 or in case of other
genomes it is a number.

• genome_blacklist: Genome blacklist file.

• fold_change: A real number used as fold change value, e.g. 2.0.

• fdr: Adjusted P-Value to be used, e.g. 0.05.

• use_docker: Set this to y if you will be using Docker.

• pull_images: Set this to y if you want pull the required docker images during the project structure creation.

3.2. Project Description YAML file 53

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes

pm4ngs, Release 0.0.1

• use_conda: Set this to y if you want to use Conda. The environments required by the ngs_data_type to
process will be installed during the project structure creation.

• cwl_runner: Absulute path to the cwl-runner.

• cwl_workflow_repo: Always use: https://github.com/ncbi/cwl-ngs-workflows-cbb. This repo will be cloned
in the bin folder.

• create_virtualenv: Set this to y if not using Docker nor Conda for creating a Python virtual environment in
a folder venv.

• use_gnu_parallel: Use GNU Parallel for parallel execution of the jobs.

• max_number_threads: Number of threads available in the host

54 Chapter 3. Extra links

https://github.com/ncbi/cwl-ngs-workflows-cbb
https://www.gnu.org/software/parallel/

CHAPTER

FOUR

REFERENCE

1. Vera Alvarez R, Pongor LS, Mariño-Ramírez L and Landsman D. Containerized open-source framework for
NGS data analysis and management [version 1; not peer reviewed]. F1000Research 2019, 8(ISCB Comm
J):1229 (poster) (doi: 10.7490/f1000research.1117155.1)

55

https://f1000research.com/posters/8-1229
https://f1000research.com/posters/8-1229

pm4ngs, Release 0.0.1

56 Chapter 4. Reference

CHAPTER

FIVE

PUBLIC DOMAIN NOTICE

National Center for Biotechnology Information.

This software is a "United States Government Work" under the terms of the United States Copyright Act. It was
written as part of the authors’ official duties as United States Government employees and thus cannot be copyrighted.
This software is freely available to the public for use. The National Library of Medicine and the U.S. Government
have not placed any restriction on its use or reproduction.

Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software and data, the
NLM and the U.S. Government do not and cannot warrant the performance or results that may be obtained by using
this software or data. The NLM and the U.S. Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any particular purpose.

Please cite NCBI in any work or product based on this material.

57

	Features
	Links to available data analysis workflows
	Differential Gene expression from RNA-Seq data
	Differential Binding detection from ChIP-Seq data
	Detection of binding events from ChIP-exo data

	Extra links
	Project Templates Installation
	Project Description YAML file

	Reference
	Public Domain Notice

